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SUMMARY i

The need for high precision numerical computing is

central to both scientific and general purpose computation.

In achieving this high precision, conventional computers

have employed weighted number systems with a fixed radix

(base), e.g the binary number system (base 2). Advantages

of such weighted number systems include the ease with which

magnitude comparison, sign detection, overflow detection,

digital-to-analog conversion, dynamic range extension, and

multiplication or division by a power of the base can be

performed. However, for arithmetic operations such as

addition, subtraction and multiplication, inherent

propagation of carries between successive digits precludes

truly parallel computation in a weighted number system.

Furthermore, this characteristic imposes a fundamental

limitation on the speed at which arithmetic computation can

be performed.

Approaches to sidestep the speed limitation can

generally be classified into two main categories. First,

one can "look ahead" and calculate the carries, reducing the

carry propagation time at the cost of additional circuitry.
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The second approach is to consider alternate number systems

for data representation and computation which have unique

characteristics with respect to carries. We will follow the

latter approach and consider the Residue Number System (RNS)

for high-speed, high-accuracy numerical computation.

Another variable when considering numerical computation

is the choice of computing media. optics appears Cs a gooa

host for RNS-based computation due to the fact that many

features of the RNS couple well with optical processing.

Natural cyclic phenomena such as polarization and phase of

light beams are candidates for residue representation which

is also cyclic. Both residue and optics also present the

capability to perform parallel carry-free computation. The

RNS also exhibits the feature of dividing high-accuracy

computation into several independent medium-accuracy

"modules." Linear optical systems implementing global

interconnects in conjunction with fast simple optical and

hybrid nonlinear devices represents another viable approach

to performing RNS computation.

As early as 1932, optics and RNS have been united to

perform numerical computation. However, only in the past 15

years have the mutual properties been used to gain some

computational advantage. The most general form of RNS

optical processing is realized by look-up tables (LUTs).

Recently two groups, Westinghouse and Boeing Aerospace, have

proposed position coded (PCR) LUT - based processing systems
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which provide a reduction in the complexity associated with

LUT processing. The complexity savings result from

exploiting key features of remainder arithmetic found in LUT

processing.

Under this task, we present an analysis of the optical

residue look-up table processors. The initial stage of the

study is an investigation of the unique features of RNS

arithmetic which become visible when realized in LUT

a-rchitectur-s, namely constant cross-diagonal elements of

the addition LUT and the zero row and column of the

multiplication LUT resulting from multiplication by zero.

These features are expressed in terms of cyclic properties

of RNS arithmetic and traced to their foundation in Group

Theory. Addition (modulo m) is inherently a group

operation, and multiplication (modulo m) can be transformed

into a group operation (modulo m-1), both of which possess

the advantages of group operation LUT processing.

These insights are subsequently used to study the

particular Westinghouse and Boeing approaches to RNS LUT

processing. Considering the RNS modular representation as

factoring the system dynamic range, the Westinghouse group

has proposed a "second-level factorization" of the moduli,

further zducing the system complexity. The above mentioned

RNS multiplication properties allow factoring (m-1) (for

each modulus m) into p factors (kl,...,Pk). Processing is

performed in p independent (ki X ki) LUTs, leading to a

-3-



significant reduction in the total number of LUT entries.

however, addition proves to be more complex in the factored

domain. The Boeing LUT processor is based on the cross-

diagonal symmetry present in group operation tables. For

LUT processing, one only needs to locate the appropriate

cross-diagonal of the table for the calculation of the

output, effectively reducing the number of table locations.

As mentioned, the addition LUT possesses this symwetry and

the multiplication LUT can be transformed into a symmetric

group table.

With the proper RNS and LUT arithmetic processing

background, the next step is performance analysis. We

present a comparative study of the currently-proposed

optical LUT 'processors with respect to traditional LUT

processors from an architectural standpoint. The approach

is to specify the LUT processors in terms of fundamental

arithmetic processing units (APUs), namely multipliers,

adders, and multiplier-accumulators (MAUs). The idea is

that carefully specifying the APUs, and maintaining that

input and output data formats must be compatible, will

provide common ground which equalizes the processors and

reveals all costs. In an effort to decouple the

architectures from hardware specifics, "computational

components" are chosen as the fundamental blocks from which

the APU architectures will be constructed. These components

include basic LUTs, transforms, encoders, decoders, and

-4-



specialized hardware such as zero-detectors. Along with the

APUs, we propose a set of performance criteria on which the

architectures are to be evaluated. In an effort to span the

range of performance issues and their trade-offs, four high-

level criterion are chosen. They are:

(1) temporal complexity - the number of sequential

stages required to perform a desired operation,

(2) spatial complexity - the number of active decision-

making elements in the system,

(3) interconnect complexity - measured as a function of

the average "fan-out" per input channel and "fan-in" to each

output channel. The interconnects can also be classified

according to uniformity from channel to channel as "shift

variant" or "shift invariant,"

(4) element complexity - the average number of

resolvable levels required of the active elements, i.e. the

element dynamic range.

Notice that the performance criteria can all be related to

specific cost issues at the hardware level.

The performance analysis proceeds as follows. The

fundamental components are specified in block form and

analyzed on the basis of our listed criteria. The component

complexities are listed in a table for easy access and

comparison. Multiplier, adder and MAU block diagrams are

then built from these components for each specific approach.

Evaluation at the APU level consists of simply adding the

5



complexities of each of the components. The results of APU

complexity for each approach, Westinghouse, Boeing and

direct, are compiled in a table. However, spatial

complexity shows a strong dependence upon moduli, which can

best be seen in graphical format, and therefore, is plotted.

Conclusions regarding the relative performance of the LUT

architectures as a function of modulus, as well as general

conclusions, can be readily extracted from the resulting

tables and graphs.

The next dimension in the LUT performance analysis is a

discussion of hardware issues. Overall system performance

parameters, such as throughput, power consumption,

connectivity, and stability are determined by combining the

architectural characteristics with hardware characteristics.

From the previous analysis, required hardware can be divided

into two categories, interconnects and active switching

elements. The architectural analysis provides the mapping

from algorithms to devices, that is, the hardware selection

is guided by the architecture for each particular approach

to LUT processing. In this section, we identify the

requirements for interconnects and switching elements as

dictated by the processing components. Next, we list the

various optical technologies capable of performing the

required connection or switch, along with the respective

advantages and disadvantages. It becomes apparent that

there is a level of interaction and associated trade-offs

-6-



between architectures and hardware. In this light, we see

that the architectures help specify which technology is most

amenable to that type of LUT processing. Alternately, one

might also conclude that no device technology meets the

requirements of a particular architecture.

In summary, we adopt a systematic and comprehensive

approach to investigating optical RNS processing. We

identify the algorithms and architectures of three

approaches to LUT processing on the common ground of

arithmetic processing units. Performance criteria are

chosen such that cost trade-offs are made explicit and not

postponed. The architectures are then mapped onto devices

and technologies suited to the particular approach. It is

felt that only in this domain can one fully assess a

reduction in complexity of one approach over another. Such

a systematic approach has helped us in identifying the

complexities of the two leading approaches (Boeing and

Wetinghouse) for computationally useful operations and

furthermore helped us locate the origins. This

understanding cannot be obtained by a totally integrated

performance analysis that gives a parts count, throughput

and power consumption estimation for a specific hardware

implementation of a specific architecture which is based

upon a specific algorithm.

The report will proceed as follows. The first section

is a tutorial on the basics of residue arithmetic, including
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various advantages and disadvantages of the number system.

The next section provides some background by tracing the

history of RNS-based optical processing. Following the

introductory material, we will focus our sights down to

optical LUT processing, and will investigate key features of

the RNS which make the more recent approaches attractive.

The fourth section presents the detailed architectural

performance analysis of optical RNS LUT processing based on

fundamental performance critaria and fundamental

computational units. The next section presents the results

of the performance analysis, along with conclusions based

upon the results. In the last section, we will map the

architectural results onto hardware considerations, rounding

out the analysis. The report concludes with a comprehensive

general reference section.
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* IN TRADITIONAL WEIGHTED NUMBER

SYSTEMS (BINARY,DECIMAL,..), INHERENT

PROPAGATION OF CARRIES PRECLUDES

TRULY PARALLEL COMPUTATION.

-> THIS POSES A FUNDAMENTAL LIMITATION

ON THE SPEED AT WHICH ARITHMETIC

OPERATIONS CAN BE PERFORMED.

* TWO APPROACHES TO CIRCUMVENT THE

LIMITATIONs

I. ADDITIONAL CIRCUITRY TO

LOOK-AHEAD

II. ALTERNATE NUMBER SYSTEMS WITH

SPECIAL CARRY CHARACTERISTICS
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* SELECT N PAZRWISE RELATIVELY PRIME INTEGER MODULI

in 1 9m=r, .. I., AS SYSTEM BASE

* INTEGER X IS REPRESENTED AS AN N-TUPLE OF RESIDUES

X ( R, R=, .. R")

where Rt the RESIDUE of X modulo ma

and 0<R, .ms-1 for each R:L

* THE REPRESENTATION FOR X IS UNIQUE IN THE DOMAIN

O<X<M-1, where M - -1 *m=*. *MP

e.g. TO PERFORM A 16-bit MULTIPLY REQUIRES 32-bit DYNAMIC

RANGE -> ms1 - 5,7,9911913916,17,19,23

* EXAMPLEs

BASE MODULli . - 2,3,5

INTEGERS. X - 7 X= - 4

REPRESENTATION. Xin>(1,1,2) X=->(99194)

ADDITIVE INVERSE -X, = InL-R:tmI r

DYNAMIC RANGE. M -2*3*5 - 3U

-14 -



TI-IE RIE IDUE NUMBER SYSTEM

* DECODING THE RESIDUE REPRESENTATION

THE CHINESE REMAINDER THEOREM:

- PERFORMS RESIDUE TO ANALOG CONVERSION

- GIVEN THE RESIDUE REPRESENTATION CR 1 ,R, ... R

THE CRT DETERMINES I X I,

PROBLEMs REQUIRES AN ANALOG SYSTEM WITH FULL DYNAMIC

RAN3E (M not ma )

15
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MIXED-RADIX CONVERSION%

CONVERSION FROM THE RESIDUE REPRESENTATION TO A WEIGHTED

NUMBER SYSTEM

- REQUIRES OPERATIONS MODULO m1 ONLY

- REQUIRES N-1 SEQUENTIAL STAGES

X -k 4, 4=t a4m 1 + ,mmn= 4. a.*m *m=*M--

- 16-



It- OLI=- An X -"Ml1-- X a

A ADD I TIO0N PERFORM MODULO M* ADDITION OF

CORRESPONDING RESIDUES FOR EACH MODULUS

EXAMPLE: X a+X= 7in 112

+ 4 - 614

* SUBTRACT IONs FIND THE ADDITIVE INVERSE OF THE

SUBTRAHEND AND THEN PERFORM ADDITION

EXAMPLE: X 1 -X= 7 => (1,1,2)

X IL +(-x) +C-4)-> (6.2a1)

(1,8,3) <= 3

* MULTIPLICATIONs MULTIPLY CORRESPONDING RESIDUES

AND FIND THE RESIDUE OF THE PRODUCT MODULO mt

EXAMPLE. X3aXm 7 ->(1,192)

x 4 >(8.1.4L

(6,1,3) <a 26

* DIVISION: GENERALLY NOT POSSIBLE

-17 -



Frm^-rumm OF' T-rHM M~a XDL9 "U aF;

* ABILITY TO DECOMPOSE A CALCULATION INTO SUBCALCULATIONS

OF REDUCED COMPUTATIONAL COMPLEXITY

-> SUBCALCULATION ACCURACY REQUIREMENT COMMENSURATE WITH

PARTICULAR MODULUS

* SUBCALCULATIONS ARE INHERENTLY INDEPENDENT AND ARE

PERFORMED IN SEPARATE UNITS

-> PARALLEL CARRY-FREE ADDITION, SUBTRACTION, AND

MULTIPLICATION

* LARGE DYNAMIC RANGE

- EXPANDABLE BY INCLUSION OF ADDITIONAL MODULI

* RNS IS A CYCLIC NUMBER SYSTEMs

- INTERMEDIATE COMPUTATION RESULTS CAN OVERFLOW SYSTEM

DYNAMIC RANGE WITHOUT ERROR IN RESULT

EXAMPLEs (7.5)-9 - 35-9 - 26

(1,1,2) * (1,2,6) - (1,2,6)

(1,2,G) - (1,1,4) - (1,2,1) + (1,181) - (1,2,1)

- 18 -
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avaSTE-m

SOME OPERATIONS IN THE RNS ARE SLOWED BY

THE NECESSITY TO CONVERT TO A WEIGHTED

REPRESENTATION WHICH IS INHERENTLY-SEQUENTIAL

*RELATIVE MAGNITUDE COMPARISON

*ALGEBRAIC SIGN DETECTION

*DYNAMIC RANGE OVERFLOW DETECTION

* DIVISION

- 19 -



Mo2,ric XN =MoNMZ0 "

dab x WBTOm I CdqL. I=mm=m- I 'P

-20-



MTIIV~ I ON

MANY RNS FEATURES COUPLE WELL WITH OPTICS

* REDUCED DYNAMIC RANGE REQUIREMENTS OF PROCESSING UNITS

>2 , but < < 1000

* PARALLEL, CARRY-FREE COMPUTATION

* CYCLIC NATURE OF RESIDUE REPRESENTATION COUPLES WITH

NATURAL CYCLIC PHENOMENA FOUKO IN LIGHT BEAMS

(polarization, phase, diffraction)

* CONVENIENT FOR LOOK-UP TABLE PROCESSING

- FAN-OUT / FAN-IN CAPABILITIES

- 3-0 INTERCONNECTS

- 21 -
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ANCIENT OPTICAL SYSTEM

PHOTO-ELECTRIC NUMBER SIEVE, D.H. LEMER, 1932

- FOR HIGH DYNAMIC RANGE COMPUTING BEFORE EMERGENCE

OF THE ELECTRONIC COMPUTER

- EMPLOYS LIGHT BEAM AND PHOTO-CELLS TO SENSE OPENINGS

AND CLOSINGS OF MECHANICAL SIEVE

- 3U GEARS, ONE FOR EACH PRIME TO 113

- USED TO FACTOR NUMBERS, SUCH AS THE MERSENNE NUMBER

- SIFTED 28,UUUSU8 NUMBERS PER HOUR

ANALOG REPRESENTATION

* A. HUANS, 1975

- FIRST TO SUGGEST COUPLING PROPERTIES OF RNS WITH

OPTICAL NUMERIC COMPUTING

* S. COLLINS, 1977

- PROCESSOR BASED ON RESIDUE REPRESENTATION BY

POLARIZATION AND PHASE STATES OF OPTICAL BEAM

PROBLEM. REQUIRED RESOLUTION OF OPTICAL COMPONENTS

for m-37 -> resolution-27r/37 radians

- 22 -



HI-IBTOR ICAL PERSPECT IVE

BINARY-CODED RESIDUE (BCR) BASED SYSTEMS

- RESIDUES ARE REPRESENTED IN THEIR BINARY FORM

- REQUIRES rogm (m,)1 BITS PER MODULUS

* CONTENT-ADDRESSABLE MEMORY, C. GUEST AND T. GAYLORD, 1980

- BASED ON TRUTH-TABLE LOOK-UP PROCESSING

- CAM STORES THE CANONICAL SUM-OF-PRODUCTS REPRESENTATION

OF EACH OUTPUT BIT

- EMPLOY LOGICAL MINIMIZATION TO REDUCE THE NUMBER OF

REFERENCE PATTERNS THE CAN MUST STORE

- 23 -



I BTOR I CAL XRPECT VE

POSITION-CODED RESIDUE (PCR) BASED SYSTEMS

- RESIDUES ARE REPRESENTED BY THE SPATIAL POSITION OF

LIGHT

* THE OPTICAL WHEEL, F. HORRIGAN AND W. STONER, 1979

- PROMPTED BY CYCLIC NATURE OF KALEIDOSCOPE OPTICS

- "OPTICAL PISTON" DEMONSTRATED MAPPING INPUT POSITIONS

INTO CYCLIC OUTPUT POSITIONS

* CORRELATION APPROACH, D. PSALTIS AND D. CASASENT, 1979

- LINEAR SYSTEM, CORRELATION-BASED FORMULATION OF RESIDUE

ARITHMETIC

- EMPLOY POSITION CODING, CARRIER MODULATION AND APERTURE

CONTROL TO ACHIEVE RNS OPERATIONS

* MAPPING APPROACH, A. HUANG, ET AL. 1979

- IMPLEMENT RESIDUE ARITHMETIC OPERATIONS WITH MAPS WHICH

PERFORM PERMUTATION OF THE INPUT DATA

- MAP BANKS ARE USED TO REALIZE CHANGEABLE MAPS

- EMPLOYS CHANGEABLE MAPS FOR CYCLIC PERMUTATIONS

- 24 -
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RECENT APPROACHES TO OPTICAL NUMERICAL

COMPUTING USING RESIDUE ARITHMETIC

-25 -



RNS L..OOK-Uf' TAL.E P'ROCESS I N

T-H4E BAS I Ca

* PCR ENC4DING IN "ONE OUT OF m" CONFIGURATION

I I 2 I
0 1 2 3 4

* TABLE LOOK-UP PROCESSINSG

MODULO m LUTs REQUIRE m = TABLE ENTRIES

EXAMPLESs MODULO 5 ADDITION AND MULTIPLICATION OF 2 AND 3

0 1 2 3 4 " x 1 2 3 4

0 0 1 2 3 4 0 i 0 0 0 0

1 1 2 3 4 0 1 a 1 2 3 4

2 2 3 4 a 1 2 0 2 4 1 3

3 3 4 0 1 2 3 I 3 1 4 2

4 4 a 1 2 3 4 o 4 3 2 1

ANSWER - U ANSWER - 1

PROCESSING IS REALIZED IN MANY WAYSt

- INPUT POSITI3dS PROVIDE ROW AND COLUMN ADDRESS FOR LUT

- FOR A GIVEN INPUT WORD, SECOND INPUT SELECTS MAP WHICH

CORRECTLY PERMUTES INPUTS FOR GIVEN OPERATION

- 26 -



FRNZ L.OOK-UP TABLE P'ROCESS I N

KEY FEATRL S

ADDITION MODULO 5 MULTIPLICATION MODULO 5

0 1 2 3 4 x 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0

1 1 2 3 4 0 1 0 1 2 3 4

2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 a 3 1 4 2

4 4 0 1 2 3 4 0 4 3 2 1

* ADDITION TABLE

- NOTE THAT ROW AND COLUMN ENTRIES SPAN THE RESIDUE

SET IN A CYCLIC FASHION

- NOTE THE CROSS-DIAGONAL SYMMETRY PRESENT IN THE TABLE

- NOTE THE CYCLIC PERMUTATION OF THOSE CROSS-DIAGONALS

* MULTIPLICATION TABLE

- NOTE ZERO ROW AND COLUMN RESULTANT FROM MULTIPLICATION

BY ZERO

- EXCLUSION OF ZERO ROW AND COLUMN RESULTS IN ROWS AND

COLUMNS THAT SPAN A REDUCED RESIDUE SET

- 27 -
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ADDITIONAL PROPERTIES OF THE RNS CAN BE

EXPRESSED IN TERMS OF GROUP THEORY

* THE SET OF INTEGERS *,1,2,...,a-I (residues of MODULUS m)

FORM A GROUP UNDER ADDITION MODULO m

* THE SET OF INTEGERS 192,3,...,m-1 (reduced residue set)

FORM A GROUP UNDER MULTIPLICATION MODULO m

* BOTH OF THESE GROUPS ARE CYCLZC UNDER THE GIVEN OPERATION

- A CYCLIC GROUP MUST HAVE AT LEAST ONE GENERATOR

* THE GENERATOR IS AN ELEMENT OF THE GROUP

- SUCCESSIVE GROUP OPERATIONS UPON THE GENERATOR

DETERMINES THE CYCLIC SEQUENCE

-> "10 IS ALWAYS A GENERATOR FOR ADDITION MODULO m

-> GENERATORS FOR MULTIPLICATION MODULO m DEPEND UPON m

- 28 -



Ta E OPFRATION TF=LE FOF CCLIC

G3ROUPS~

Fm Fm F' F . . F - 2

F IL F IL F F F"'

F' F' Fm F F--

F* F* Fm Fs Fa

* GROUP OPERATION

F - IDENTITY ELEMENT

Fl - GENERATOR

Fl m FaOFIOFO. . .F2 (i TIMES)

F' " nF2

- 29 -



EXAIMPL. . MODUL O M QO = LR U OPERe TIONS

GROUP OPERATION OF ADDITION:

- THE RESIDUES (0,1,2,3,4) FORM A CYCLIC GROUP UNDER

ADDITION MODULO 5

- F11-1 IS ALWAYS A GROUP GENERATOR

- THE OPERATION TABLE IS IDENTICAL TO THE LOOK-UP TABLE

GROUP OPERATION OF MULTIPLICATIONs

- THE INTEGERS (192,3,4) FORM A CYCLIC GROUP UNDER

MULTIPLICATION MODULO 5

- F 1 -3 IS A GROUP GENERATOR

3 w = 3 2=3 3 ZR=4 3 ZN=2 (3 m l

- CYCLIC ORDERING IS THEN (1,3,42)

- OPERATION TABLE IS REALIZED AS REDUCED (m-1 x m-1)

TRUTH TABLE WITH ROWS AND COLUMNS RESEQUENCED

x 1 3 4 2

1 1 3 4 2

3 3 4 2 1

4 4 2 1 3

2 2 1 3 4

* NOTICE THAT THE LUT NOW EXHIBITS ALL THE CYCLIC PROPERTIES

- 30 -
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* SINCE THE MULTIPLICATION TABLE CAN BE TRANSFORMED INTO A

GROUP OPERATION TABLE, THE CHOICE OF GROUP OPERATION

BECOMES ARBITRARY

* THUS, THE RESEQUENCED MULTIPLICATION LOOK-UP TABLE CAN BE

REPLACED WITH AN ADDITION TABLE

-> NEED ONLY TO KEEP TRACK OF THE PERMUTATION MAPPING

LOMARITHMIC TRANSFORMATION

- THE GENERATOR PROVIDES THE KEY TO THE TRANSFORMATION

- TAKING THE GENERATOR-BASED LOG OF THE INTEGER POWERS

WHICH GENERATE THE GROUP PROVIDES A TRANSFORMATION

WHICH MAPS THE 92,9...,rm-1 CYCLIC GROUP UNDER

MULTIPLICATION MODULO m ONTO THE 9,i,...,m-2 CYCLIC

GROUP UNDER ADDITION MODULO rn-i

MULTIPLICATION MODULO m -- > ADDITION MODULO m-i

SUMMARY s MODULAR ADDITION IS A CYCLIC GROUP OPERATION AND

MODULAR MULTIPLICATION CAN BE TRANSFORMED INTO A CYCLIC GROUP

OPERATION

- 31 -



RN3 LOOK-UP TABLE P'ROCESS N X "

TWO RECENT PROFACHES

MOST LUT ARCHITECTURES PROPOSED REQUIRE ACTIVE ELEMENTS FOR

EACH TABLE ENTRY

- > SPATIAL COMPLEXITY -

THIS IMPOSES LIMITATIONS ON THE RANGE OF ACCEPTABLE MODULI

RECENT EFFORTS HAVE CENTERED ON EXPLOITING THE CYCLIC GROUP

PROPERTIES OF RESIDUE ARITHMETIC TO REDUCE NUMBER OF LUT

ENTRIES

FACTORED LOOK-UP TABLES

WESTINGHOUSEs SOUTZOULIS, MALARKEY, DAVIES, BRADLEY,

and BEAUDET

CROSS-DIAGONAL-SYMMETRIC LOOK-UP TABLES

BOEING AEROSPACEs C. CAPPS, R. FALK AND T. HOUK
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* THE RNS REPRESENTATION CAN BE VIEWED AS "FACTORING" AT

THE FIRST LEVEL, PROPERTIES OF MULTIPLICATION MODULO m

ALLOW FACTORING AT A SECOND LEVEL

ALGORITHMs "DIRECT" METHOD

- FOR PRIME m, m-1 IS EVEN AND CAN BE FACTORED INTO

PAIRWISE RELATIVE PRIMES

m-1 - k 3 *k*m ... *kw

- GENERATORS SPECIFY THE ELEMENTS OF p SUBGROUPS

- iTH SUBGROUP HAS DIMENSION ka

- SUBGROUPS ARE CYCLIC (THEOREM)

- EACH RESIDUE DIGIT, FOR A PARTICULAR MODULUS mj, IS NOW

REPRESENTED AS A p-TUPLE OF SUB-RESIDUES

Ri -> (R~jz R'j=v . . . 9Rj o

- PROCESSING IS PERFORMED IN p SEPARATE LUTs OF DIMENSION

kL X k 1

* ALSO PERFORM FACTORING WITH "LOGARZTHMIC" METHOD

* FACTORED ADDITION IS MORE COMPLEX FOR EITHER METHOD
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MX^Mf=LEI FACTORED LU-T PROCESS I NG

DIRECT APPROACH

MODULUS - 7

RESIDUESs 3,1,2,3,4,5,6

REDUCED SETs 1,2,3,4,5,6

FACTOR. 6-2*3

GENERATORS. 2w=1 2L=2 22-4 2=m2=I

6=1m 6 3L6 6==6=m-

SUBBROUPS 2 ELEMENT > C1,6)

3 ELEMENT > C1,214)

ENCODING. 1(1,1) 2-(1,4) 3-(6,2) 4-(1,2) 5-(6,4) &-(6,1)

LUTss

x 1 x 1 2 4

1 1 1 1 2 4

& & 1 2 2 4 1

4 4 1 2

EXt 3*6 MODULO 7 -> (6,2)*(691) - (1,2) -> 4

NOTE. COULD HAVE PERFORMED THE MULTIPLICATION IN ADDITION

TABLES USING THE LOGARITHMIC TRANSFORMATION

344
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* EXPLOIT THE CROSS-DIAGONAL SYMMETRY PRESENT IN GROUP TABLES

* A TABLE OPERATION NEED ONLY FIND THE CORRECT CROSS-DIAGONAL

4 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

NOTE CORRESPONDENCE BETWEEN PCR INPUT SOURCE SPACING AND

CROSS-DIAGONAL OF TABLE

ALGORITHMs

* ONLY PERFORM OPERATIONS ON CYCLIC TABLES

- ADDITION MODULO a IS CYCLIC

- MULTIPLICATION MODULO a CAN BE TRANSFORMED INTO

ADDITON MODULO 1-I

* ARRANGE INPUTS IN LINEAR ARRAY

* CALCULATE EFFECTIVE DISTANCE BATWEEN INPUTS

-> SPATIAL COMPLEXITY IS REDUCED TO LINEAR DIMENSION
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X F :ICL. Ft"S3 L..LIT F=*MaCES93NXG"

R~:~fa~MNf= ^M^L-VW X M
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APPRC ACH

* TO ANALYZE CURRENT LOOK-UF TABLE ARCHITECTURES (WITH

RESPECT TO TRADITIONAL LUT ARCHITECTURES) AS ARITHMETIC

PROCESSING UNITS.

- BUILD PROCESSING UNITS FROM FUNDAMENTAL COMPUTATIONAL

COMPONENTS

- COMPATIBLE INPUT AND OUTPUT DATA FORMATS

=> SPECIFY PERFORMANCE CRITERIA

=> SPECIFY AND ANALYZE COMPUTATIONAL COMPONENTS

M> SPECIFY AND ANALYZE FUNDAMENTAL COMPUTATIONAL UNIT

-> EVALUATE DIFFERENT ALGORITHMS/ARCHITECTURES
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* TEMPORAL COMPLEXITY (C,-):

NUMBER OF SEQUENTIAL STAGES

* SPATIAL COMPLEXITY (C =)s

NUMBER OF DECISION MAKING ELEMENTS

* INTERCONNECT COMPLEXITY (C x)

- AVERAGE FANXZN (Cpu) AND FAN-OUT (Cwco) PER CHANNEL

- "SHIFT VARIANT" OR "SHIFT INVARIANT"

* ELEMENT COMPLEXITY (Cm)

AVERAGE NUMBER OF RESOLVABLE LEVELS
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DE-F= INM Ir I ON 64nD f-%PL..Li-T ION

TRANSFORMATION STAGE

FOR LOGARTIHMIC TRANSFORMATIONS OR ANY FIXED PERMUTPTION

Cr-

CW we -

0 0
C x-1-1 SHIFT VAR.I

Cwms 22

3 - 0-3

4 0-4

+2 MODUL060

INPUT ENCODER

FOR ENCODING INPUTS INTO FACTORED REPRESENTATION

C -r- -6

cm-

C.-i -(r-i) /k a

cus P. p 1-.- -*

2 -*106

4 1

6 -- *4

FACTOR ENCODING

-40
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OUTPUT DECODER

DECODING FACTORED OUTPUTS INTO POSITION CODE

C -y. -I

Cas-(rn-1) number of output lines

Cv.. ,u( rn-i) /k,£

'04

FACTOR DECODNG

ZERO DETECTOR

REMOVING ZERO INPUT FOR MULTIPLICATION

C,- 2-2

0 0

ZERO DETECTOR
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ADDITION AND MULTIPLICATION TABLE ARCHITECTURES ARE IDENTICAL

DESCRIPTION:

2 rn-POSITION INPUTS

rn-POSITION OUTPUTINU8

rnI LUT ENTRIES

- - -- - -OUTPUT

EVALUATION.

LUT

C-cmmf SHIFT INVARIANT

Co- z -i SHIFT VARIANTI

-42-



F'ROCESMI NO COMPONENTS

BO3 I NO ADD XT I ON L.OOK-UP TABL.E

DESCRIPTIONs

2 m-POSITION INPUTS

m-POSITION OUTPUT

2m-1 LUT ENTRIES NPUTB

OUTPUT

LUT

EVALUATIONs

c -r-1

Cm-2m-1

C,.=-> architecture dependent

Cp z-> architecture dependent

Cm-> architecture dependent
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PRFOCE~SS I NQ COMI'ONENTS

BOE INC3 MULL.T IPLICATION L.OOK-UP TEBL.E

DESCRIPTION:

INPUT ZERO DETECTION

INPUT TRANSFORMATION

2 (m-i) POSITION INPUTS

(m-1) POSITION OUTPUT

2m-3 LUT ENTRIES 
IPT8

OUTPUT TRANSFORMATION I I I I I i

T- T - - T" " '

EVALUATIONs

LUTC '

Cw-2m-2

Cz-n> Cz transformation

Cp.=o> architecture dependent

Co. zi> architecture dependent

Cmm> architecture dependent

- 44 o
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F"ROCEaaw x NO aCOI1P'ONENT

Wmasr x NmI-IOL9B C=A-rOmmD MULL.T I F='L. I cdcT I aN

LOOCf-LJ=' -r~aL.I

DESCRIPTIONs

INPUT ZERO DETECTION

2 ki POSITION INPUTS, i-In TO p

k* POSITION OUTPUT

k*- LUT ENTRIES

NPtJT1B

0 ki k2

ki k

EVALUATIONs

C -r 1

Cm= k

Cwak SHIFT INV

Cv- z -k.L SHIFT VAR

C..inZ.
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f=MRlC2M0 I NO COMI=ONENTS-r

WE-a-XO3Ta= I=0r~M AOMOLJX-r'CO~D DDI aIO L-LJT

DESCRIPTION:

INPUT ZERO DETECTION AND PASS-THRU

EXTRA INPUT 2-BIT 'L"or"U" WORD

2 kL (i-1 to p) + 4 POSITION INPUTS

kL + 2 POSITION OUTPUT

k*- + 4 LUT ENTRIES

"FEEDBACK LUT" RECODES ADDITION OUTPUTS

WLIT3

00

ki k

Lwrl DOUTPUT

EVALUATIONs S E 4

C -y. -2 LU3 FEOSA~W LUT

Cm= Zka in 2.Eki~

Co-cmka SHIFT INV &decoder & encoder

Cw z -ka SHIFT VAR &decoder & encoder

Cw-2sl & p.1:1
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NOTES ON FACTORED ADDITION LUTs

Westinghouse has proposed two main approaches to
factored addition: "direct" and "logarithmic." The
a,:)aches differ greatly in Loh algorithm ind
architecture. In this analysis, we focus on the "direct"
method.

First, recall that the motivation for LUT factoring was
based on multiplication by zero. The key property is that a
zero result can only be produced if either input (or both
inputs) is (are) zero, and hence, simple zero-detection
removes zero from the input and the output. However,
removing zero from the input for modular addition is a
different case. Zero can result from additions where
neither addend is zero (i.e. 5+2 modulo 7 = 0). Therefore,
the LUTs for addition must be capable of identifying m
separate output channels, but the factored LUTs can only
produce m-1 outputs. Additional information must be carried
through the system to produce the extra output.

In terms of processing components, there are three
additional units required to perform factored addition over
factored multiplication. Their description and related
complexities are discussed here.

(1) Zero-detection with pass-thru capability: note that
addition by zero must pass the other input, unperturbed, to
the output. This corresponds to an additional spatial
complexity equal to the total number of non-zero input
channels. This is the term linear in ki.

(2) Additional "U/L" 2x2 LUT: the LUT is appended to
identify each input as being upper or lower half of the the
range. The table has three output channels: U for both
inputs U, L for both inputs L, and B for one input of each.
This corresponds to a constant spatial complexity of 4.

(3) "Feedback LUT:" can be realized as a decoder, to
detect all possible 3*(m-l) output states, cascaded with an
encoder, to transmit the correct output based on the
"feedback" rules for addition. This most general case
corresponds to the spatial complexity term linear in m (3m-3
for the decoder) with element dynamic range of p+l:l
required.

Note that with the "direct" approach, the data format
is different for addition than for multiplication, requiring
an additional re-encoding stage between any pairs of
successive additions and multiplications. This result is
best seen when the MAU is constructed. Westinghouse has
introduced the "logarithmic" method for addition (based on
the logarithmic transformation we discussed earlier), which
provides for common data representation in both LUTs. This
eliminates the need for a re-encoding stage. However, the
addition algorithm introduces three sequential operations.
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COMPONENT Cr Cm c-- g=cw

TRANSFORM o a 1-ISV a

ENCODER a a ( -I) /k -Lp - c p-

DECODER 1I OP P ,(M-1) /k 1  pt1

Z. DETECT 1 1 2 1:0

m mLUT I M 2mSV,msI 2:1

9-ADD 1 2m-1 A-D A-D

9-MULT I 2m-2 A-D A-D

W-MULT I £k , =+ k aSV ,k ,S1 21l

W-ADD 2 k .= k V*, k &Sl. 2:1,

k , +43m.1 p+12 1
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THE MULTIPLY-ACCUMULATE UNIT

* THE MAU PERFORMS THE "SUM OF PRODUCTS" (SOP) OPERATION

WHICH IS FUNDAMENTAL IN NUMERICAL CCMPUTATION

IC(il)... - A() I3*B(i) IC(i)I.m

MULT ADD
SUM n

INPUT A UNIT UNIT

INPUT B SUM n-1

NOW, WE WILL SPECIFYs

- DIRECT m m MAU

- BOEING MAU

- WESTINGHOUSE FACTORED MAU

- 49 -



vD> IFRCT m22 MAU

INPUT B

;- -

--- - -.. OUTPUT

MULT. LUT ADD. LUT

C =2

Cm -2m
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-rok 9LE = _ M F=' L_ : X -rY C31=F FZRC S ; FEN3(3 M

U" I TSE

UNIT TEMPORAL COMPLEXITY ELEMENT COMPLEXITY

MULTIPLIER

DIRECT 1 2.1

BOEING 1 ARCH. -DEPENDENT

WESTINGHOUSE 1 2.1

ADDER

DIRECT 1 2:1

BOEING I ARCH. -DEPENDENT

WESTINGHOUSE 2 2.1, p+1:1

MAU

DIRECT 2 2:1

BOEING 2 ARCH. -DEPENDENT

WESTINGHOUSE 5 2.1, pill p*1:l

* THE SPATIAL COMPLEXITY SHOWS A STRONG DEPENDENCE ON

MODUL1, WHICH IS BEST SEEN IN GRAPHICAL FORMAT
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NOTES ON SPATIAL COMPLEXITY RESULTS

- The modulus axis is not linear.
- The moduli were chosen based upon those listed for

factoring by Goutzoulis (LA-SPIE, 1988).
- The Complexity axis is a Log10 scale.

MULTIPLIER SPATIAL COMPLEXITY
- The upper bound is quadratic in m (m2 ).

- The Boeing plot is linear in m (2m-2).
- The Westinghouse plot is heavily-dependent upon the

factorization.
- At m=157, both approaches exhibit approx. two orders

of magnitude reduction in complexity over the Direct.
- As m increases, the oscillation of the West. plot

dampens.
- Relative magnitudes:

m=23 -> factor of 3 between Boeing and West.
m=61 -> factor of 2.5 between West. and Boeing
m=157 -> factor of 1.5 between West. and Boeing

ADDER SPATIAL COMPLEXITY
- Upper bound and lower bound are quadratic and linear
complexities, respectively.

- Linear term in West. complexity dominates.
- Boeing complexity remains the same.
- At m=157, both approaches demonstrate reductions in
complexity of at least 35 over the Direct.

- Relative magnitudes:
m=23 -> factor of 5 between Boeing and West.
m=61 -> factor of 2 between Boeing and West.
m=157 -> factor of 2 between Boeing and West.

MAU SPATIAL COMPLEXITY
- Upper bound and lower bouna are quadratic (2m2) and

linear (4m) complexities, respectively.
- Results almost identical to adder results
- Linear terms in West adder dominate.
- At m-157, both approaches demonstrate reductions in

complexity of at least 35 over the Direct.
- Relative magnitudes:

m-23 -> factor of 4 between Boeing and West.
m-61 -> factor of 2 between Boeing and West.
m-157 -> factor of 2 between Boeing and West.
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* THE SECOND LEVEL FACTORING AND THE USE OF CYCLIC

PROPERTIES BOTH LEAD TO LINEAR SPATIAL COMPLEXITY

LOOK-UP TABLE PROCESSORS.

* THE TIME COMPLEXITY IS INDEPENDENT OF MODULUS SIZE

* THE ELEMENT COMPLEXITY (DYNAMIC RANGE) SHOWS A MODERATE

DEPENDENCE ON MODULI

* GLOBAL, SPACE-VARIANT INTERCONNECTS WITH MODERATE

(1-IO) FAN-IN AND FAN-OUT REQUIRED

- 9 -
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HARDW ME CON0 MDERATz ON8

THE IRN OPTICAL COMPUTING UNITS CONSISTS OF3

- INTERCONNECTS (BETWEEN UNITS AND WITHIN UNITS)

- ACTIVE SWITCHING ELEMENTS (LLUrr AND DECODERS)

* THERE ARE A NUMBER OF CHOICES FOR EACH OF THE

CONSTITUENTS. THE HARDWARE SELECTION FOR EACH

CONSTITUENT WILL BE GUIDED BY THE ALGORITHM AND

ARCHITECTURE

* THE SYSTEM PERFORMANCE (COMPUTATIONAL THROUSHPUT, POWER

CONSUMPTION, SPATIAL COMPLEXITY, INTERFACE

REQUIREMENTS, MECHANICAL STABILITY) IS DETERMINED BY

COMBINING THE HARDWARE CHARACTERISTICS WITH THE

ALGORITHM / ARCHITECTURE CHARACTERISTICS
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BETWEEN COMPUTING UNIT (1-1)

* ENCODERS (1-fl, IRREGULAR, 1-0)

* DECODERS (M-fl, IRREGULAR, 1-0)

* LOOK UP TABLES (1-fl, REGULAR, PLINAR FOR INPUTSI fl-I,

IRREGULAR, 3-0 FOR OUTPUTS1 Mi-1, REGULAR, PLANAR FOR

OUTPUTS IN SYMMETRIC)

Trlcm-4NOL.O~c x I

* FIBER OPTIC INTERCONNECTS ARM FLEXISLE, RUGBED, 3-0,

EFFICIENT AND EASY TO DEMONSTRATE

- DON'T SCALE WELL

- DIFFICULT TO AUTOMATE

* INTEGRATED OPTICAL INTERCONNECTS ARE FLEXIDLE, RUGGED,

EFFICIENT, WILL SCALE WELL AND EASILY AUTOMATED

- INHERENTLY PLANAR (NOT SUITED TO LUTs)

* FREE-SPACE OPTICAL INTERCONNECTS ARE FLEXIBLE, SCALE

WELL AND EASILY AUTOMATED

- TIGHT ALIGNMENT TOLERENCEG

- INEFFICIENT

* FOURIER OPTICAL INTERCONNECTS HAVE SPECIAL SYMMETRIES

- COHERENT ILLUMINATION REQUIRED
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*DECODERS (P-INPUT OmbND SATES)

* LOOK UP TABLES (2-INPUT ~n BATES, *-INPUT WIRED C3F

BATES- ENTAILS SPATIAL COMPLEXITY)

"TKC""NOL~cO3 IwoU

* ALL-OPTICAL NONLINEAR DEVICES

- HIGH SPEED, COMPATIBLE INPUT / OUTPUT, 2-D PARALLEL

OUTPUT, LOW FAN-IN / OUT, CONTRAST

- HIGH POWER CONSUMPTION, IMMATURE TECHNOLOGY

* HYBRIC TEC)4NOLOGIES

- LASER DIODE ARRAYS

- HIGH SPEED, LARSE POWER CONSUMPTION

- GUIDED WAVE OPTICAL SWITCHES

- HISH SPEED, LARS8 POWER CONSUHPTION, 1-D ARRAYS

- SPECIAL PURPOSE DEVICES (1-0 ACOUSTOOPTIC POINT

MODULATOR ARRAYS, MAGNETOOPTIC LIGHT MODULATOR)

-IMMATURE TECHNOLOGIE8, POWER-SPEED LIMITS NOT

WELL ESTABLISHED
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^NO HAcRVWAMM

* BOEING APPROACH OF UTILIZING LINEAR COMPLEXITY I9SBASED

ON FOURIER OPTICS FOR SHIFT-INVARIANT INTERCONNECTS.

* ARCHITECTURE AMENABLE TO INTEGRATED OPTICAL

IMPLEMENTATION WITH HIGH SPEED MODULATORS

* THE LARGE AREA DETECTOR REQUIRED IN THE OUTPUT MAY POSE

THE PRIMARY LIMIT ON THE SPEED OF THE SYSTEM

* IF THE DETECTOR AREA CAN BE REDUCED, THE OVERALL SYSTEM

EFFICIENCY COULD CHANGE
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8UMMARY

* RESIDUE NUMBER SYSTEM CAN BE EFFECTIVELY USED

APPLICATIONS WITH LARGE NUMBER OF MULTIPLY-ADD/SUBTRACT

AND VERY FEW DIVISIONS, COMPARISONS, SIGN DETECTION

* POSITION CODED RESIDUE REPRESENTATION LEADS TO

EFFECTIVE LOOK UP TABLE COMPUTING

* SWITCHING REQUIREMENTS OF LUT-r ARE MODEST IN TERMS

OF FAN-IN f OUT AND COWTRAST

S* SPATIAL COMPLEXITY AND SWITCHINO ELEMENT COMPLEXITY

DEPEND VERY STRONSLY ON THE ALGORITHM AND THE MODULUS

* IMPACT OF DIFFERENT DEVICE TECHNOLOSIE9 ON

ALOTCTU@R PERFORMANCE MERITS FURTHER STUDY

* DELINIATION OF DOMAINS OF APPLICABILITY OF RESIDUE

NUMBER SYSTEM MERITS FURTHER STUDY
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